
http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Video Chapters
• (Ch-1) Introduction : Basic Terminology, Elementary Data Organization, Built in Data Types in C. Abstract Data Types (ADT)

• (Ch-2) Array: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major
Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Array Application of arrays, Sparse Matrices and their representations.

• (Ch-3) Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubly Linked List, Circularly
Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition Subtraction &
Multiplications of Single variable & Two variables Polynomial.

• (Ch-4) Stack: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of
stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal
of recursion Problem solving using iteration and recursion with examples such as binary search, Fibonacci numbers, and Hanoi towers. Trade
offs between iteration and recursion.

• (Ch-5) Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue
and Priority Queue.

• (Ch-6) Tree: Basic terminology used with Tree, Binary Trees, Binary Tree Representation: Array Representation and Pointer(Linked List)
Representation, Binary Search Tree, Strictly Binary Tree ,Complete Binary Tree . A Extended Binary Trees, Tree Traversal algorithms: Inorder,
Preorder and Postorder, Constructing Binary Tree from given Tree Traversal, Operation of Insertion , Deletion, Searching & Modification of
data in Binary Search . Threaded Binary trees, Traversing Threaded Binary trees. Huffman coding using Binary Tree. Concept & Basic
Operations for AVL Tree , B Tree & Binary Heaps

• (Ch-7) Graphs: Terminology used with Graph, Data Structure for Graph Representations: Adjacency Matrices, Adjacency List, Adjacency.
Graph Traversal: Depth First Search and Breadth First Search.

• (Ch-8) Hashing: Concept of Searching, Sequential search, Index Sequential Search, Binary Search. Concept of Hashing & Collision resolution
Techniques used in Hashing

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Idea of computer science

• Computer science deals with solving a problem correctly in the form of
Algorithm which then can be converted into a program, in most efficient time
and memory.

• Problem --> Solution(Algorithm) àProgram (Efficient)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• To write an efficient program we need knowledge of both Data Structures and
Algorithms.

• DATA STRUCTURE + ALGORITHM = PROGRAM’

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Why we study data structure and algorithms
• Course objective is to teach you how to code efficiently.
• What is the meaning of efficiency (time, space, battery, system buses, register

etc) time is considered as most important.
• Better running time is obtained from the use of most appropriate data structure

and algorithms, rather than through removing a few statements by clever
coding.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

What is data structure
• Data structure is a particular way of organizing data in a computer memory

(cache, main, secondary) so that Memory can be used efficiently both in terms
of time and space.

• It is a logical relationship existing between individual elements of data, it
considers elements stored and also their relationship to each other.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Data structure mainly specifies the following four things: -
• Organization of data

• Accessing methods

• Degree of association

• Processing methods

Array

Link List

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Array Link List

Queue

Stack Tree

Graph

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Effect of Data Structure
• Data structure effect both the structural and functional aspects of the program.

• Different kinds of data structures are suited to different kinds of applications, and some are
highly specialized to specific tasks, For example.
• Relational databases commonly use B-tree indexes for data retrieval
• Compiler implementations usually use hash tables to look up identifiers.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Usually, efficient data structures are key to designing efficient algorithms. Some formal design
methods and programming languages emphasize data structures, rather than algorithms, as
the key organizing factor in software design.

• The implementation of a data structure usually requires writing a set of procedures that
create and manipulate instances of that structure.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Primitive data structure
• Primitive data structures are those which have predefined way of storing data by

the system. And the set of operations that can be performed on these data are
also predefined. They are directly operated upon by the machine instruction.

• Primitive data structures are char, int, float, double. The predefined operations
are addition, subtraction, etc.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Data
Structure

Primitive

Integer float Character Pointer

Non-
Primitive

Array List

Linear List

Stack Queues
Link List

Non-linear
list

Graphs Trees

Files

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Non-Primitive data structure

• But there are certain situations when primitive data structures are not sufficient for our job.
There comes derived data structures and user defined data structures.

• Derived data structures are also provided by the system but are made using primitives like an
array. It can be array of chars, array of int, etc. The set of operations that can be performed on
derived data structures are also predefined.

• Finally, there are user defined data types which the user defines using the primitive and
derived data types using language constructs like structure or class and uses according to their
needs. And the user has to define the set or operations that we can perform on them. User
defines data types are Linked Lists, Trees, etc.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Array Link List

Queue Graph

Stack Tree

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

LINEAR DATA STRUCTURE NON-LINEAR DATA STRUCTURE

• In a linear data structure, data elements are
arranged in a linear order where each and every
element are attached to its previous and next
adjacent.

• In a non-linear data structure, data elements are
attached in hierarchical manner.

• In linear data structure, single level is involved.
• Whereas in non-linear data structure, multiple levels

are involved.

• Its implementation is easy in comparison to non-
linear data structure.

• While its implementation is complex in comparison
to linear data structure.

• In linear data structure, data elements can be
traversed in a single run only.

• While in non-linear data structure, data elements
can’t be traversed in a single run only.

• Its examples are: array, stack, queue, linked list, etc. • While its examples are: trees and graphs.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Homogeneous data: Homogeneous data structures are those data structures
that contain only similar type of data e.g. like a data structure containing only
integer or float values. The simplest example of such type of data structures is an
Array.

• Heterogeneous Data: Heterogeneous Data Structures are those data structures
that contains a variety or dissimilar type of data, for e.g. a data structure that
can contain various data of different data types like integer, float and character.
The examples of such data structures include structures, union etc.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Array

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Array
• An array is a is a data structure that stores collection of elements of

same type stored at contiguous memory locations and can be
accessed using an index.

int num[5];

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

How to declare an array in C

• datatype arrayName[array Size];

• int myarray[5];

• In C, the default value of the elements in an array is undefined or garbage. When an array is declared, the
memory is allocated for the elements of the array, but the values of those elements are not initialized.

• It is important to note that some programming languages, like Java, automatically initialize the elements of an
array to a default value (e.g., 0 for integers, false for booleans, and null for objects) if no initial values are
specified.

• Note that in C, you cannot change the size of the array once it has been declared.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

How to initialize an array in C

• dataType arrayName[arraySize] = {value1, value2, ..., valueN};

• int myarray[5] = {1, 2, 3, 4, 5};

• You can also initialize an array like this.
• int myarray[] = {1, 2, 3, 4, 5};

• Here, we haven't specified the size. However, the compiler knows it’s size is 5 as
we are initializing it with 5 elements.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Change Value of Array elements

• int myarray[5] = {1, 2, 3, 4, 5};

• make the value of the third element to -1
• myarray[2] = -1;

• make the value of the fifth element to 0
• myarray[4] = 0;

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Arrays have several advantages, like:
• Efficient storage and retrieval: Arrays store elements in contiguous memory

locations, which makes it easy to retrieve elements using their index. So very
efficient with large amounts of data.

• Random access(fast access): Arrays allow access to individual elements using their
index, which means that accessing any element of the array takes the same amount
of time.

• Easy to sort and search: Arrays can be easily sorted and searched using algorithms
like binary search, which can be more efficient than searching through unsorted
data.

• Flexibility: Arrays can be used to represent a wide variety of data structures,
including stacks, queues etc.

• Easy to use: Arrays are a simple and easy-to-use data structure that can be easily
understood by programmers of all skill levels.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Arrays also have some disadvantages, likes:
• Fixed size: In most programming languages, arrays have a fixed size that

cannot be changed once they are created. This can make it difficult to work
with data structures that need to grow or shrink dynamically(Internal
Fragmentation) (External Fragmentation).

• No built-in support for insertion or deletion: Inserting or deleting an
element in an array can be time-consuming and require shifting all the
elements after the insertion or deletion point.

• Homogeneous elements: Arrays can only store elements of the same type,
which can be limiting for many requirements.

• Poor performance for some operations: Some operations, such as searching
or inserting elements in a sorted array, can have poor performance compared
to other data structures like hash tables or binary search trees.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Applications of Arrays

• Memory Management: Arrays enable efficient storage of multiple items of the
same type, especially when size is known beforehand.

• Data Representation: Used for vectors and matrices in mathematical operations
like matrix multiplication.

• Database Management: Arrays store and manage datasets in relational
databases, allowing efficient querying and updates.

• Implementing Data Structures: Arrays are foundational for structures like
heaps, hash tables, and strings.

• Caching & Buffering: Arrays act as buffers in systems, storing data temporarily
before writing to slower mediums or transmitting over networks.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Types of indexing in array:
• 0 (zero-based indexing): The first element of the array is indexed by subscript of 0

• 1 (one-based indexing): The first element of the array is indexed by subscript of 1

• n (n-based indexing): The base index of an array can be freely chosen. Usually
programming languages allowing n-based indexing also allow negative index values and
other scalar data types like enumerations, or characters may be used as an array index.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Size of an array

• Number of elements = (Upper bound – Lower Bound) + 1

• Lower bound index of the first element of the array

• Upper bound index of the last element of the array

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Size = number of elements * Size of each elements in bytes

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

One Dimensional array

• Address of the element at kth index
• a[k] = B + W*k
• a[k] = B + W*(k – Lower bound)
• B is the base address of the array
• W is the size of each element
• K is the index of the element
• Lower bound index of the first element of the array
• Upper bound index of the last element of the array

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Let the base address of the first element of the array is 250 and each
element of the array occupies 3 bytes in the memory, then address of
the fifth element of a one- dimensional array a[10] ?

a[k] = B + W*(k – Lower bound)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q An array has been declared as follows
A: array [-6--------6] of elements where every element takes 4 bytes, if
the base address of the array is 3500 find the address of array[0]?

a[k] = B + W*(k – Lower bound)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Two-Dimensional array
• The two-dimensional array can be defined as an array of arrays. The 2D array is organized as

matrices which can be represented as the collection of rows and columns.

• However, 2D arrays are created to implement a relational database look a like data structure.
It provides ease of holding the bulk of data at once which can be passed to any number of
functions wherever required.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Two-Dimensional array

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

data_type array_name[rows][columns];

int disp[2][4] = {

 {10, 11, 12, 13},

 {14, 15, 16, 17}

 };

OR

int disp[2][4] = { 10, 11, 12, 13, 14, 15, 16, 17};

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Implementation of 2D array
• In computing, row-major order and column-major order are methods for

storing multidimensional arrays in linear storage such as random access memory.

• The difference between the orders lies in which elements of an array
are contiguous in memory.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Row Major implementation of 2D array
• In Row major method elements of an array are arranged sequentially row by

row.

• Thus, elements of first row occupies first set of memory locations reserved for
the array, elements of second row occupies the next set of memory and so on.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Row Major implementation of 2D array

Address of a[i][j] = B + W*[(U2-L2+1) (i-L1) + (j-L2)]

B = Base address
W = Size of each element
L1 = Lower bound of rows
U1 = Upper bound of rows
L2 = Lower bound of columns
U2 = Upper bound of columns
(U2-L2+1) = numbers of columns
(i-L1) = number of rows before us
(j-L2) = number of elements before us in current row

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Column Major implementation of 2D array
• In Column major method elements of an array are arranged sequentially column by column.

Thus, elements of first column occupies first set of memory locations reserved for the array,
elements of second column occupies the next set of memory and so on.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Column Major implementation of 2D array

Address of a[i][j] = B + W*[(U1-L1+1) (j-L2) + (i-L1)]

B = Base address
W = Size of each element
L1 = Lower bound of rows
U1 = Upper bound of rows
L2 = Lower bound of columns
U2 = Upper bound of columns
(U1-L1+1) = numbers of rows
(j-L2) = number of columns before us
(i-L1) = number of elements before us in current column

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q An array VAL[1…15][1…10] is stored in the memory with each element
requiring 4 bytes of storage. If the base address of the array VAL is 1500,
determine the location of VAL[12][9] when the array VAL is stored
(i) Row wise
Address of a[i][j] = B + W*[(U2-L2+1) (i-L1) + (j-L2)]

(ii) Column wise
Address of a[i][j] = B + W*[(U1-L1+1) (j-L2) + (i-L1)]

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

3-Dimensional array

A([L1]---[U1]), ([L2]---[U2]), ([L3]---[U3])

Location of A [I, j, k] =
 B + (i-L1) (U2-L2+1) (U3-L3+1)
 + (j-L2)(U3-L3+1)
 + (k-L3)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Suppose multidimensional arrays Q is declared Q(1: 8, – 5: 5, – 10 : 5) stored in
column major order
• Find the length of each dimension of Q.
• The number of elements in Q.
• Assuming base address (Q) = 400, W = 4, find the effective indices E1, E2, E3 and

address of the element Q[3, 3, 3].

A [I, j, k] = B + (i-L1) (U2-L2+1) (U3-L3+1) + (j-L2)(U3-L3+1) + (k-L3)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

N-Dimensional array

A([L1]---[U1]), ([L2]---[U2]), ([L3]---[U3]), ([L4]---[U4])--------([LN]---[UN])

Location of A [I, j, k, ----, x] =
 B + (i-L1) (U2-L2+1) (U3-L3+1) (U4-L4+1) ----(Un-Ln+1)
 + (j-L2)(U3-L3+1) (U4-L4+1) ----(Un-Ln+1)
 + (k-L3)(U4-L4+1) ----(Un-Ln+1)
 +
 +
 +
 + (x-Ln)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Sparse Matrix
• A matrix is considered sparse if a large number of its elements are zero Conversely, a

matrix with most of its elements being non-zero is termed dense.
• Using a sparse matrix over a regular matrix has distinct advantages:
• Storage Efficiency: Given that a majority of the elements are zeros, sparse

matrices allow for memory conservation by only storing the non-zero elements.
• Computational Speed: By structuring the data to only account for non-zero

elements, operations become faster, as they skip over the zero values.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Sparse Matrix Representations can be done in many ways
following are two common representations:
• Array representation
• Linked list representation

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Array representation
• 2D array is used to represent a sparse matrix in which there are three rows named as
• Row: Index of row, where non-zero element is located
• Column: Index of column, where non-zero element is located
• Value: Value of the non zero element located at index – (row, column)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Linked List Representation

• In linked list, each node has four fields. These four fields are defined
as: Row: Index of row, where non-zero element is located
• Column: Index of column, where non-zero element is located
• Value: Value of the non zero element located at index – (row,column)
• Next node: Address of the next node

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Basics of Stack

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Basics of Stack

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

STACK
• A stack is a non-primitive linear data structure. it is an ordered list in which

addition of a new data item and deletion of already existing data item is done
from only one end known as top of stack (TOS).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The element which is added in last will be first to be removed and the element which is
inserted first will be removed in last.

• That is why it is called last in first out (LIFO) or first in last out (FILO) type of list.

• Most frequently accessible element in the stack is the top most element, whereas the least
accessible element is the bottom of the stack.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Choose the correct alternatives (more than one may be correct) and write the
corresponding letters only: The following sequence of operations is performed on a
stack: PUSH (10), PUSH (20), POP, PUSH (10), PUSH (20), POP, POP, POP, PUSH (20),
POP The sequence of values popped out is ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Applications of Stack
• Expression Parsing: Stacks help evaluate and check programming

expressions, ensuring balanced parentheses.
• Backtracking: Used in algorithms like maze-solving and the "Eight

Queens" puzzle.
• Function Calls: Manage function details during calls in programming

languages.
• Undo Feature: Implement undo in text editors and browsers.
• Syntax Checking: Compilers use stacks to match syntax elements like

'if' with 'else'.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Stack Implementation
Stack is generally implemented in two ways.
• Static Implementation: - Here array is used to create stack. it is a simple

technique but is not a flexible way of creation, as the size of stack has to be
declared during program design, after that size implementation is not efficient
with respect to memory utilization.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Dynamic implementation: - It is also called linked list representation
and uses pointer to implement the stack type of data structure.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

5

4

3

2

1

0

Push operation: - The process of adding new element to the top of stack is called push
operation. the new element will be inserted at the top after every push operation the top
is incremented by one. in the case the array is full and no new element can be
accommodated it is called over-flow condition.

PUSH (S, N, TOP, x)
{
 if (TOP==N-1)
 Print stack overflow and exit
 TOP = TOP + 1
 S[TOP] = x
 exit
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

5

4

3

2

1

0

Pop: - The process of deleting an element. from the top of stack is called POP operation,
after every POP operation the stack is decremented by one if there is no element in the
stack and the POP operation is requested then this will result into a stack underflow
condition.

POP (S, N, TOP)
{
 if (TOP==-1)
 print underflow and exit
 y = S[TOP]
 TOP=TOP-1
 return(y) and exit
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

typedef struct
{

int arr[MAX_SIZE];
int top;

} Stack;

void initialize(Stack *s)
{

s->top = -1;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int isEmpty(Stack *s)
{

return s->top == -1;
}

int isFull(Stack *s)
{

return s->top == MAX_SIZE - 1;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void push(Stack *s, int item)
{

if (isFull(s))
{

printf("Stack is full!\n");
return;

}
s->arr[++(s->top)] = item;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int pop(Stack *s)
{

if (isEmpty(s))
{

printf("Stack is empty!\n");
exit(1);

}
return s->arr[(s->top)--];

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 100
int main()
{

Stack s;
initialize(&s);
return 0;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

typedef struct Node
{

int data;
struct Node* next;

} Node;

typedef struct
{

Node* top;
} Stack;

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void initialize(Stack* s)
{

s->top = NULL;
}

int isEmpty(Stack* s)
{

return s->top == NULL;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void push(Stack* s, int item)
{

Node* newNode = (Node*)
malloc(sizeof(Node));
if (newNode == NULL)
{

printf("Stack overflow!\n");
exit(1); // Exit with an error code

}
newNode->data = item;
newNode->next = s->top;
s->top = newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int pop(Stack* s)
{

if (isEmpty(s))
{

printf("Stack underflow!\n");
exit(1);

}
Node* temp = s->top;
int poppedData = temp->data;
s->top = s->top->next;
free(temp);
return poppedData;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
int main()
{

Stack s;
initialize(&s);

return 0;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void reverseString(char str[])
{

int length = strlen(str);
Stack s;
initialize(&s);
for (int i = 0; i < length; i++)
{

push(&s, str[i]);
}
for (int i = 0; i < length; i++)
{

str[i] = pop(&s);
}

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int main()
{

char str[] = "Hello, World!";
printf("Original String: %s\n", str);
reverseString(str);
printf("Reversed String: %s\n", str);
return 0;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q if the input sequence is 1, 2, 3, 4, 5 then identify the wrong stack
permutation (possible pop sequence)?
a) 3, 5, 4, 2, 1

b) 2, 4, 3, 5, 1

c) 4, 3, 5, 2, 1

d) 5, 4, 3, 1, 2

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Infix notation: the operator is written in between the operands. e.g. A+B. the
reason why this notation is called infix is the place of operator in the expression.

• Prefix notation: In which the operator is written before the operands it is also
called as polish notation. e.g. +AB

• Postfix: In the postfix notation the operator are written after the operands, so
it is called the postfix notation. It is also known as suffix notation or reverse
polish notation. AB+

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The description "Polish" refers to the nationality of logician Jan
Łukasiewicz, who invented Polish notation in 1924.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Postfix notation is type of notation which is most suitable for a computer to
calculate any expression. It is universally accepted notation for designing
arithmetic and logical unit (ALU) of the CPU.

• Any expression entered into the computer is first converted into postfix
notation, stored in stack and then calculated.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider an expression a + b * c / d ^ e ^ f * d – c + b, convert
it into both prefix and post fix notation?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider an expression log(x!), convert it into both prefix and
post fix notation?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider an expression a + (b * c) / (d ^ e) convert it into post
fix notation using stack?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Evaluation of arithmetic expression

• An expression is defined as a number of operands or data items combined using
several operators. There are basically three of notation to represent an
expression.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The result evaluating the postfix expression

8 2 3 * 1 / + 4 1 * 2 / +

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The result evaluating the prefix expression

+ + 8 / * 2 3 1 / * 4 1 2

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Recursion
• Recursion is defined as defining anything in terms of itself Recursion is a programming

concept where a function calls itself in order to solve a larger problem by breaking it down
into smaller, more manageable sub-problems. It's a fundamental idea in computer science
and mathematics and is used to design algorithms and solve problems that have repetitive
structures.

• Base Case: Essential to halt recursion. It provides a direct solution without further recursive
calls.

• Recursive Case: The function calls itself to address smaller instances of the problem.

• Call Stack: Each recursive call is added to the program's call stack. Deep recursion might
cause a "stack overflow" error.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int factorial(int n)
{

if (n == 0)
{

return 1; // Base case: factorial of 0 is 1
}
else
{

return n * factorial(n-1); // Recursive case
}

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Iteration
• Iteration refers to the process of repeatedly executing a set of statements as long as a

specified condition remains true. In programming, iteration is commonly
implemented using loops.

• Loop Types:
• For Loop: Used for a known number of repetitions.
• While Loop: Runs as long as a condition is true.
• Do-While Loop: Executes at least once before checking the condition.

• Control Statements:
• Break: Exits the loop.
• Continue: Skips to the next iteration.

• Nested Loops: Loops within loops, often seen in matrix tasks.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int factorial(int n)
{

int result = 1;
for(int i = 1; i <= n; i++)
{

result *= i;
}
return result;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Recursion vs. Iteration
• Any problem that can be solved recursively can also be solved iteratively (using

loops), and vice versa. However, the choice between the two often depends on
problem characteristics, readability, and efficiency considerations.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Aspect Recursion Iteration

Basic Concept Function calls itself to solve sub-
problems.

Uses loops to repeatedly execute code
blocks.

Memory Usage Typically uses more memory due to
call stack.

Uses less memory as it doesn't rely on
the call stack.

Termination Requires a base case to prevent
infinite loops. Requires a loop exit condition.

Ease of
Implementation

Can be more intuitive for certain
problems.

Often simpler and more
straightforward for repetitive tasks.

Performance Might be slower due to overhead of
function calls.

Typically faster due to direct loop
mechanics.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Recursion can be categorized based on how and where functions call themselves or other
functions. Here's a succinct breakdown of the types of recursion:

• Direct Recursion:
• A function calls itself directly.
• Tail Recursion: If the recursive call is the last operation in the function, before it returns a

value. It's more memory efficient since it can be optimized by the compiler to use constant
stack space.

• Head Recursion: If the recursive call is made before any other operation in the function.
The operations are executed after the recursive call, which makes it use more stack space
compared to tail recursion.

• Indirect Recursion:
• Two or more functions call each other in a cyclic manner. For example, function A calls

function B, and function B calls function A.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code?
Void main()
{
 fun(4);
}

Void fun(int x)
{
 if (x > 0)
 {
 Printf(“%d”, x);
 fun(x - 1);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code?
Void main()
{
 fun(4);
}

Void fun(int x)
{
 if (x > 0)
 {
 fun(x - 1);
 Printf(“%d”, x);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code?
Void main()
{
 fun(3);
}

Void fun(int x)
{
 if (x > 0)
 {
 Printf(“%d”, x);
 fun(x - 1);
 Printf(“%d”, x);
 fun(x - 1);
 Printf(“%d”, x);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code on n = 5?
int x(int n)
{
 if (n < 3)
 return 1;
 Else
 return x(n-1) + x(n-1) + 1;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following recursive C function. If get (5) function is being called in main () then
how many times will the get () function be invoked before returning to the main ()?
void get (int n)
{

if (n < 1)
 return;
get(n-1);
get(n-3);
printf ("%d", n);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In mathematics, the Fibonacci numbers, commonly denoted Fn, form
a sequence, called the Fibonacci sequence, such that each number is the sum
of the two preceding ones, starting from 0 and 1.
• if n==0, then f(n) = 0
• if n==1, then f(n) = 1
• if n > 1, then f(n-1) + f(n-2)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• if n==0, then f(n) = 0
• if n==1, then f(n) = 1
• if n > 1, then f(n-1) + f(n-2)

n 0 1 2 3 4 5 6 7 8 9 10 11 12

f(n)

No of invocation

No of addition

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

no of invocation = 2f(n+1) - 1
no of addition = f(n+1) – 1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Fibonacci numbers are named after Italian mathematician Leonardo of Pisa, later known
as Fibonacci. In his 1202 book Liber Abaci, Fibonacci introduced the sequence to Western
European mathematics

• Although the sequence had been described earlier in Indian mathematics,as early as 200 BC
in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables
of two lengths.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Pingala

http://www.knowledgegate.in/GATE

• Fibonacci numbers appear unexpectedly often in mathematics, so much so that
there is an entire journal dedicated to their study, the Fibonacci Quarterly.

• Applications of Fibonacci numbers include computer algorithms such as
the Fibonacci search technique and the Fibonacci heap data structure, and
graphs called Fibonacci cubes used for interconnecting parallel and distributed
systems.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• They also appear in biological settings, such as branching in trees, the arrangement of leaves
on a stem, the fruit sprouts of a pineapple, the flowering of an artichoke, an uncurling fern,
and the arrangement of a pine cone's bracts.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Although the sequence had been described earlier in Indian mathematics, as early as 200 BC
in work by Acharya Pingala on enumerating possible patterns of Sanskrit poetry formed from
syllables of two lengths.

• binary numeral system

• binomial theorem

• Pascal's triangle

• zero

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Tower of hanoi

• The Tower of Hanoi (also called the Tower of Brahma) is a mathematical
game or puzzle.

• It consists of three rods and a number of disks of different sizes, which can slide
onto any rod.

• The puzzle starts with the disks in a neat stack in ascending order of size on one
rod, the smallest at the top, thus making a conical shape.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

The objective of the puzzle is to move the entire stack to another rod, obeying the
following simple rules:

1.Only one disk can be moved at a time.

2.Each move consists of taking the upper disk from one of the stacks and placing it
on top of another stack or on an empty rod.

3.No larger disk may be placed on top of a smaller disk.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• There is a story about an Indian temple in Kashi Vishwanath which contains a large room with
three time-worn posts in it, surrounded by 64 golden disks.

• Brahmin priests, acting out the command of an ancient prophecy, have been moving these
disks in accordance with the immutable rules of Brahma since that time.

• The puzzle is therefore also known as the Tower of Brahma puzzle.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Tower(N, B, A, E)
{
 if(n = 1)
 {
 B à E
 return
 }
 tower(n-1, B, E, A);
 B à E
 tower(n-1, A, B, E);
 Return
}

total disk moves = 2n -1
total number of function call = 2n+1 -1
how many invocation are required for the first disk to move = n

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code?
void Print_array(a, i, j)
{
 if (i = = j)
 {
 printf(‘’%d’, a[i]);
 return;
 }
 Else
 {
 printf(‘’%d’, a[i]);
 print_array(a, i+1, j)
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code?
void Print_array(a, i, j)
{
 if (i = = j)
 {
 printf(‘’%d’, a[i]);
 return;
 }
 Else
 {
 print_array(a, i+1, j)
 printf(‘’%d’, a[i]);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find the output of the following pseudo code?
void Print_somthing(a, i, j)
{
 if (i = = j)
 {
 printf(‘’%d’, a[i]);
 return;
 }
 Else
 {
 if(a[i] < a[j])
 Print_somthing (a, i+1, j);
 Else
 Print_somthing (a, i, j-1);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find what this function is doing?
 void what(struct Bnode *t)
{
 if (t)
 {
 what(t à LC);
 printf(‘’%d’, t à data);
 what(t à RC);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find what this function is doing?
 void what(struct Bnode *t)
{
 if (t)
 {

printf(‘’%d’, t à data);
 what(t à LC);
 what(t à RC);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find what this function is doing?
 void what(struct Bnode *t)
{
 if (t)
 {
 what(t à LC);
 what(t à RC);
 printf(‘’%d’, t à data);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find what this function is doing?
 Void what(struct Bnode *t)
{
 if (t)
 {

printf(‘’%d’, t à data);
 what(t à LC);
 printf(‘’%d’, t à data);
 what(t à RC);
 printf(‘’%d’, t à data);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Find what this function is doing?
Void A(struct Bnode *t)
{
 if (t)
 {
 B(t à LC);
 printf(‘’%d’, t à data);
 B(t à RC);
 }
}

Void B(struct Bnode *t)
{
 if (t)
 {
 printf(‘’%d’, t à data);
 A(t à LC);
 A(t à RC);
 }
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q What does the following function print for n = 25?
void fun(int n)
{
 if (n == 0)

 return;
 printf("%d", n%2);
 fun(n/2);
}

(A) 11001
(B) 10011
(C) 11111
(D) 00000

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following recursive function fun (x, y). What is the value of fun (4, 3)
int fun(int x, int y)
{
 if (x == 0)
 return y;
 return fun(x - 1, x + y);

}

(A) 13

(B) 12

(C) 9

(D) 10

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q What does the following function do?
int fun(int x, int y)
{

 if (y == 0)
 return 0;

 return (x + fun(x, y-1));
}

(A) x + y

(B) x + x*y

(C) x*y

(D) xy

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q What does fun2() do in general?
int fun(int x, int y)
{
if (y == 0)
return 0;

 return (x + fun(x, y-1));
}

int fun2(int a, int b)
{

 if (b == 0)
 return 1;

 return fun(a, fun2(a, b-1));
}

(A) x*y (B) x+x*y
(C) xy (D) yx

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Queue
• A queue is a linear list of elements in which deletions can take place only at one

end called the front, and insertions can take place only at the end called rear.
• Queue is a first in first out types of data structure(FIFO), the terms ‘Front’ and

‘Rear’ are used in describing a linear list only when it is implemented as a queue.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In computer science queue are used in multiple places e.g. in time sharing system program
with the same priority from a queue waiting to be executed.

• A queue is a non-primitive linear data structure. it is homogeneous collection of elements.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Representation of Queues
• Mostly each of our queues will be maintained by a linear array QUEUE and two

pointer variables: FRONT containing the location of the Front element of the
queue and REAR, containing the location of the rear element of the queue.

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Whenever an element is added to the queue, the value of REAR is increased by 1
• REAR = REAR + 1

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The condition FRONT = null, will indicate that the queue is empty. Whenever an
element is deleted from the queue, the value of FRONT is increased by 1
• Front = Front + 1

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• This means that after N insertion the rear element of the queue will occupy
QUEUE[N] or queue will occupy the last part of the array. This may occur even
though the queue itself may not contain many elements.

• Total number of elements in a queue
• Rear – Front + 1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion

Enqueue (QUEUE, N, F, R, ITEM)
{

if (R == N - 1)
Write over flow and exit

if (F = = -1)
Set F = 0 && R = 0

Else
R = R + 1

Queue[R] = ITEM
}

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Deletion

Dequeue (QUEUE, N, F, R, ITEM)
{

if (F == - 1)
Write under flow and exit

ITEM = QUEUE[F]
if (F = = R)

Set F = -1 && R = -1
Else

F = F + 1
Return item

}

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

typedef struct
{

int arr[MAX_SIZE];
int front;
int rear;

} Queue;

void initialize(Queue *q)
{

q->front = -1;
q->rear = -1;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int isEmpty(Queue *q)
{

return q->front == -1;
}

int isFull(Queue *q)
{

return q->rear == MAX_SIZE - 1;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void enqueue(Queue *q, int item)
{

if (isFull(q))
{

printf("Queue is full!\n");
return;

}
if (isEmpty(q))
{

q->front = 0;
}
q->arr[++(q->rear)] = item;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int dequeue(CircularQueue *q)
{

if (isEmpty(q))
{

printf("Queue is empty!\n");
exit(1);

}
int dequeuedItem = q->arr[q->front];
if (q->front == q->rear)
{

q->front = -1;
q->rear = -1;

}
else
{

q->front = (q->front + 1) % MAX_SIZE;
}
return dequeuedItem;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 100
int main()
{

Queue q;
initialize(&q);

return 0;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

typedef struct Node
{

int data;
struct Node* next;

} Node;

typedef struct
{

Node* front;
Node* rear;

} Queue;

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void initialize(Queue* q)
{

q->front = NULL;
q->rear = NULL;

}

int isEmpty(Queue* q)
{

return q->front == NULL;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void enqueue(Queue* q, int item)
{

Node* newNode = (Node*) malloc(sizeof(Node));
if (newNode == NULL)
{

printf("Queue overflow!\n");
return;

}
newNode->data = item;
newNode->next = NULL;
if (isEmpty(q))
{

q->front = newNode;
}
else
{

q->rear->next = newNode;
}
q->rear = newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int dequeue(Queue* q)
{

if (isEmpty(q))
{

printf("Queue underflow!\n");
exit(1);

}
Node* temp = q->front;
int dequeuedItem = temp->data;
q->front = q->front->next;
if (q->front == NULL)
{

q->rear = NULL;
}
free(temp);
return dequeuedItem;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
int main()
{

Queue q;
initialize(&q);

return 0;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q. Consider the following sequence of operations on an empty stack.
Push(54);push(52);pop();push(55);push(62);s=pop();

Consider the following sequence of operations on an empty queue.
enqueue(21);enqueue(24);dequeue();enqueue(28);enqueue(32);q=dequeue();
The value of s+q is ___________.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Analysis

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Circular Queue
0 1 2 3 4 5 6 7

1. EnQ a, b, c
2. DeQ 1 element
3. EnQ d, e, f
4. EnQ g, h, I
5. DeQ 4 element
6. EnQ j, k, l, m, n

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Circular Queue
Insertion

Enqueue(QUEUE, N, F, R, ITEM)
{

if ((F==0 && R==N-1) :: (F == R + 1))
Write over flow and exit

if (F = = -1)
Set F = 0 && R = 0

Else
R = (R + 1)%N

Queue[R] = ITEM
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Circular Queue
Deletion

Dequeue(QUEUE, N, F, R, ITEM)
{

if (F == - 1)
Write under flow and exit

ITEM = QUEUE[F]
if (F = = R)

Set F = -1 && R = -1
Else

F = (F + 1)%N
Return item

}

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

typedef struct
{

Int arr[MAX_SIZE];
int front;
int rear;

} CircularQueue;

void initialize(CircularQueue *q)
{

q->front = -1;
q->rear = -1;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Int isEmpty(CircularQueue *q)
{

return q->front == -1;
}

int isFull(CircularQueue *q)
{

return (q->rear + 1) % MAX_SIZE == q->front;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void enqueue(CircularQueue *q, int item)
{

if (isFull(q))
{

printf("Queue is full!\n");
return;

}
if (isEmpty(q))
{

q->front = 0;
q->rear = 0;

}
else
{

q->rear = (q->rear + 1) % MAX_SIZE;
}
q->arr[q->rear] = item;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int dequeue(CircularQueue *q)
{

if (isEmpty(q))
{

printf("Queue is empty!\n");
exit(1);

}
int dequeuedItem = q->arr[q->front];
if (q->front == q->rear)
{

q->front = -1;
q->rear = -1;

}
else
{

q->front = (q->front + 1) % MAX_SIZE;
}
return dequeuedItem;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int main()
{

CircularQueue q;
initialize(&q);

return 0;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

typedef struct Node
{

int data;
struct Node* next;

} Node;

typedef struct
{

Node* front;
Node* rear;

} CircularQueue;

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void initialize(CircularQueue* q)
{

q->front = NULL;
q->rear = NULL;

}

int isEmpty(CircularQueue* q)
{

return q->front == NULL;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

// Enqueue an item to the queue
void enqueue(CircularQueue* q, int item)
{

Node* newNode = (Node*) malloc(sizeof(Node));
if (newNode == NULL)
{

printf("Queue overflow!\n");
return;

}
newNode->data = item;
newNode->next = NULL;
if (isEmpty(q))
{

q->front = newNode;
q->rear = newNode;
newNode->next = newNode;

}
else
{

newNode->next = q->front;
q->rear->next = newNode;
q->rear = newNode;

}
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

// Dequeue an item from the queue
int dequeue(CircularQueue* q)
{

if (isEmpty(q))
{

printf("Queue underflow!\n");
exit(1);

}
Node* temp = q->front;
int dequeuedItem = temp->data;
if (q->front == q->rear)
{

q->front = NULL;
q->rear = NULL;

}
else
{

q->front = q->front->next;
q->rear->next = q->front;

}
free(temp);
return dequeuedItem;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
int main()
{

CircularQueue q;
initialize(&q);

return 0;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Dequeue
• In a dequeue, both insertion and deletion operations are performed at either end of the

queues. That is, we can insert an element from the rear end or the front end. Also deletion is
possible from either end.

• This dequeue can be used both as a stack and as a queue.
• There are various ways by which this dequeue can be represented. The most common ways of

representing this type of dequeue are :
• Using a doubly linked list
• Using a circular array

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Types of dequeue :
• Input-restricted dequeue : In input-restricted dequeue, element can be

added at only one end but we can delete the element from both ends.
• Output-restricted dequeue : An output-restricted dequeue is a dequeue

where deletions take place at only one end but allows insertion at both
ends.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Priority Queue

• A priority queue is a collection of elements such that each element has been
assigned a priority and such that the order in which elements are deleted and
processed comes from the following rules.
• An element of higher priority is processed before any element of lower

priority
• Two element with the same priority are processed according to the order in

which they were added to the queue.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Problem with Array
• Fixed size and reallocation: Arrays have a fixed size, which can lead to memory waste if the

allocated size is larger than the actual data. Resizing an array often requires creating a new
one and copying elements, which can be inefficient.

• Inefficient insertion and deletion: Adding or removing elements in the middle of an array
requires shifting the remaining elements, resulting in a higher time complexity (O(n))
compared to linked lists.

• Less flexible: Arrays can only store elements of the same data type, and their structure
cannot be easily adapted to different types (e.g., singly, doubly, circular) like linked lists.

0 1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Linked list

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Solution is linked list
• A linked list is a dynamic data structure that consists of elements called nodes,

which are connected in a linear sequence. Each node contains two parts: data and a
reference to the next node.

• The first part is the information part of the node, which can store any type of
information, such as integers, characters, or objects.

• The second part called linked field or next pointer field, contains the address of the
next node of the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The pointer of the last node contains a null pointer, which is an invalid address (0 or
negative value).

• The linked also contains a list pointer variable called start/first/head which contain the
address of the first node in the list.

• A special case is the list that has no nodes, such a list is called null list or empty list and
is denoted by a null pointer in the variable start/first/head.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Implementation of link list
struct node
{
 int data;
 struct node *next;
};

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Advantage of link list
• Dynamic size and efficient memory usage: Linked lists can easily grow or shrink, allowing for

efficient memory allocation and reduced waste as elements are added or removed.

• Fast insertion and deletion: Operations like inserting or removing elements can be performed
in constant time (O(1)) if the position is known, offering better performance compared to
array-based structures.

• Versatility: Linked lists can be adapted to various types (singly, doubly, circular) and can store
elements of different data types or objects, providing a flexible data structure for a wide range
of applications.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Disadvantage of link list
• Slower access times: Linked lists have a higher time complexity for element access (O(n))

compared to arrays, as elements must be accessed sequentially from the head of the list.

• Memory overhead: Each node in a linked list requires additional memory to store the
reference (or pointer) to the next node, increasing the overall memory usage compared to
array-based structures.

• Pointer manipulation: Implementing linked lists involves managing pointers, which can
increase code complexity and lead to potential issues, such as memory leaks or segmentation
faults, if not handled carefully.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Aspect Array Linked List

Memory Allocation Contiguous memory locations. Non-contiguous memory
locations.

Size Flexibility Fixed size. Dynamic size, can grow or
shrink as required.

Access Time O(1) for direct access due to
indexing.

O(n) for accessing an element
as it requires traversal.

Insertion/Deletion O(n) in worst case as shifting
may be required.

O(1) if the pointer to the node
is known.

Memory Efficiency More memory efficient for a
known size of data.

Extra memory for pointers,
which can be overhead for
small data sizes.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
// Define the Node structure
typedef struct Node
{

int data;
struct Node* next;

} Node;

Node* createNode(int data)
{

Node* newNode = (Node*) malloc(sizeof(Node));
if (!newNode)
{

printf("Memory error\n");
exit(1);

}
newNode->data = data;
newNode->next = NULL;
return newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

int main()
{

Node* head = createNode(10);
head->next = createNode(20);
head->next->next = createNode(30);
printf("Linked List: ");
traverseList(head);
return 0;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for Traversing a link list iteratively, where
pointer head have the address of the first node of the list?

void traverseList(Node* head)
{

Node* current = head;
while (current != NULL)
{

printf("%d -> ", current->data);
current = current->next;

}
printf("NULL\n");

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for Traversing a link list recursively, where
pointer head have the address of the first node of the list?

void traverseListRecursive(Node* current)
{

if (current == NULL)
{

printf("NULL\n");
return;

}
printf("%d -> ", current->data);
traverseListRecursive(current->next);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for searching a key in a link list iteratively,
where pointer head have the address of the first node of the list?
Node* searchKeyIterative(Node* head, int key)
{

Node* current = head;
while (current != NULL)
{

if (current->data == key)
{

return current;
}
current = current->next;

}
return NULL;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for searching a key in a link list recursively, where
pointer head have the address of the first node of the list?
Node* searchKeyRecursive(Node* current, int key)
{

if (current == NULL)
{

return NULL;
}
if (current->data == key)
{

return current;
}
return searchKeyRecursive(current->next, key);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for inserting a node with a key in
the starting of link-list?
void insertAtBeginning(Node** head, int key)
{

Node* newNode = createNode(key);
newNode->data = data;
newNode->next = *head;
*head = newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for inserting a node with a key after a
location in a link-list?
void insertAfter(Node* prevNode, int key)
{

if (prevNode == NULL)
{

printf("The given previous node cannot be NULL.\n");
return;

}
Node* newNode = createNode(key);
newNode->data = data;
newNode->next = prevNode->next;
prevNode->next = newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for deleting a node from the starting of
link-list?

void deleteAtBeginning(Node** head)
{

if (*head == NULL)
{

printf("List is already empty.\n");
return;

}
Node* temp = *head;
*head = (*head)->next;
free(temp);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for deleting a node after a given location
from the starting of link-list?
void deleteAfter(Node* prevNode)
{

if (prevNode == NULL || prevNode->next == NULL)
{

printf("The given node is NULL or there's no node after it to delete.\n");
return;

}
Node* temp = prevNode->next;
prevNode->next = temp->next;
free(temp);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for reversing a link-list in a iteratively?
void reverseListIterative(Node** head)
{

Node* prev = NULL;
Node* current = *head;
Node* next = NULL;
while (current != NULL)
{

next = current->next;
current->next = prev;
prev = current;
current = next;

}
*head = prev;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Write a C-style pseudocode for reversing a link-list in a recursively?

Node* reverseListRecursive(Node* head)
{

if (head == NULL || head->next == NULL)
{

return head;
}
Node* rest = reverseListRecursive(head->next);
head->next->next = head;
head->next = NULL;
return rest;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The following C function takes a single-linked list of integers as a parameter and rearranges the elements of the list. The function is
called with the list containing the integers 1, 2, 3, 4, 5, 6, 7 in the given order. What will be the contents of the list after the function
completes execution?
struct node
{
 int value;
 struct node *next;

};
void rearrange(struct node *list)
{
 struct node *p, * q;
 int temp;
 if ((!list) || !list->next)

 return;
 p = list;
 q = list->next;
 while(q)
 {

 temp = p->value;
 p->value = q->value;
 q->value = temp;
 p = q->next;
 q = p ? p->next:0;

 }
}

1 2 3 4 5 6 7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The following C function takes a simply-linked list as input argument. It modifies the list by moving the last element to the front of the list and
returns the modified list. Some part of the code is left blank. Choose the correct alternative to replace the blank line.
typedef struct node
{

 int value;
 struct node *next;

}Node;

Node *move_to_front(Node *head)
{

 Node *p, *q;
 if ((head == NULL: || (head->next == NULL))

 return head;
 q = NULL; p = head;
 while (p-> next !=NULL)
 {

 q = p;
 p = p->next;

 }

 return head;

}
(A) q = NULL; p->next = head; head = p;
(B) q->next = NULL; head = p; p->next = head;
(C) head = p; p->next = q; q->next = NULL;
(D) q->next = NULL; p->next = head; head = p;

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q What is the output of following function for start pointing to first node of
following linked list?
1->2->3->4->5->6
void fun(struct node* start)
{

 if(start == NULL)
 return;

 printf("%d ", start->data);
if(start->next != NULL)

 fun(start->next->next);
 printf("%d ", start->data);

}
(A) 1 4 6 6 4 1 (B) 1 3 5 1 3 5

(C) 1 2 3 5 (D) 1 3 5 5 3 1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Header link list
• A header linked list is a variation of a standard linked list that includes a special node, called

the header node, at the beginning of the list.

• The header node does not store any actual data; instead, it serves as a fixed reference point
that simplifies some operations on the linked list like inserting or deleting elements at the
beginning of the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Here are some features of header linked lists:
• The header node is always present, even when the list is empty.
• The header node’s ‘next’pointer points to the first actual data node in the list or

‘Null’ if the list is empty.
• The header node simplifies operations like insertion or deletion at the beginning,

middle, or end of the list, as well as traversal, since the header node acts as a
consistent starting point.

• The header node can also store metadata about the list, such as its length,
although this is not a requirement.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void traverseHeaderLinkedList(Node* header)
{

if (header == NULL)
{

printf("List is empty.\n");
return;

}
Node* temp = header->next;
while (temp != NULL)
{

printf("%d -> ", temp->data);
temp = temp->next;

}
printf("NULL\n");

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Circular Linked List
• A singly circular linked list is a variation of a singly linked list in which the last

node in the list points back to the first node, creating a loop or circular structure.
• The primary difference between a standard singly linked list and a singly circular

linked list is that the last node’s ‘Null’ pointer refers to the first node in the list,
rather than being ‘Null’.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Here are some key features of singly circular linked lists:
• Singly circular linked lists can be used to implement data structures like queues

or circular buffers, where elements are added to the end and removed from the
front, with constant-time complexity for both operations.

• Traversal of the list requires a stopping condition, such as iterating until you
reach the starting node again or using a counter to limit the number of
iterations, to avoid infinite loops.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void traverseCircularLinkedList(Node* head)
{

if (head == NULL)
{

printf("List is empty.\n");
return;

}
Node* temp = head;
do
{

printf("%d -> ", temp->data);
temp = temp->next;

}
while (temp != head);
printf("%d (head)\n", head->data);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Header circular link list

• A header singly circular linked list is a variation of a singly circular linked list that includes a
special node, called the header node, at the beginning of the list.

• The header node does not store any actual data; instead, it serves as a fixed reference point
that simplifies some operations on the linked list. The header node's primary purpose is to
eliminate the need for special cases when performing certain operations like inserting or
deleting elements at the beginning or end of the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void traverseHeaderCircularLinkedList(Node* header)
{

if (header->next == header)
{

printf("List is empty.\n");
return;

}
Node* temp = header->next;
while (temp != header)
{

printf("%d -> ", temp->data);
temp = temp->next;

}
printf("HEADER\n");

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Doubly link list
• A doubly linked list is a data structure in which each node contains a data element and two

pointers, one pointing to the previous node (the ‘previous’ pointer) and the other pointing to
the next node (the ‘next’ pointer) in the sequence.

• This bidirectional linking allows for easier traversal and manipulation of the list in both forward
and backward directions, as well as simplifying some operations such as insertion or deletion
of nodes at any position in the list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>

typedef struct Node
{

int data;
struct Node* prev;
struct Node* next;

} Node;

Node* createNode(int data)
{

Node* newNode = (Node*) malloc(sizeof(Node));
if (!newNode)
{

printf("Memory error\n");
exit(1);

}
newNode->data = data;
newNode->prev = NULL;
newNode->next = NULL;
return newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void insertAtBeginning(Node** head, int data)
{

Node* newNode = createNode(data);
if (*head != NULL)
{

(*head)->prev = newNode;
}
newNode->next = *head;
*head = newNode;

}

void insertAtEnd(Node** head, int data)
{

Node* newNode = createNode(data);
if (*head == NULL)
{

*head = newNode;
return;

}
Node* temp = *head;
while (temp->next != NULL)
{

temp = temp->next;
}
temp->next = newNode;
newNode->prev = temp;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void traverse(Node* head)
{

Node* temp = head;
while (temp != NULL)
{

printf("%d -> ", temp->data);
temp = temp->next;

}
printf("NULL\n");

}

Node* search(Node* head, int key)
{

Node* temp = head;
while (temp != NULL)
{

if (temp->data == key)
{

return temp;
}
temp = temp->next;

}
return NULL;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void deleteAtBeginning(Node** head)
{

if (*head == NULL)
return;

Node* temp = *head;
*head = (*head)->next;
if (*head != NULL)
{

(*head)->prev = NULL;
}
free(temp);

}

void deleteAtEnd(Node** head)
{

if (*head == NULL)
return;

Node* temp = *head;
while (temp->next != NULL)
{

temp = temp->next;
}
if (temp->prev != NULL)
{

temp->prev->next = NULL;
}
else
{

*head = NULL;
}
Free(temp);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void deleteByPointer(Node** head, Node* loc)
{

if (*head == NULL || loc == NULL)
return;

if (loc->prev == NULL)
{

*head = loc->next;
}
else
{

loc->prev->next = loc->next;
}
if (loc->next != NULL)
{

loc->next->prev = loc->prev;
}
free(loc);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Here are some key features of doubly linked lists:
• Each node has two pointers: ‘next’ pointing to the subsequent node and

‘previous’ pointing to the preceding node in the list.
• The first node’s ‘previous’ pointer and the last node’s ‘next’ pointer are set to

‘null’ indicating the beginning and end of the list, respectively.
• Doubly linked lists allow for easier traversal and manipulation in both forward

and backward directions compared to singly linked lists.
• Doubly linked lists consume more memory than singly linked lists due to the

additional ‘previous’ pointer.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Header Circular Doubly Link List

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following function that takes reference to head of a Doubly Linked List as parameter. Assume that a node
of doubly linked list has previous pointer as prev and next pointer as next.
void fun(struct node **head_ref)
{
 struct node *temp = NULL;
 struct node *current = *head_ref;
 while (current != NULL)
 {
 temp = current->prev;
 current->prev = current->next;
 current->next = temp;
 current = current->prev;
 }

if(temp != NULL)
 *head_ref = temp->prev;
 }
Assume that reference of head of following doubly linked list is passed to above function
1 <--> 2 <--> 3 <--> 4 <--> 5 <-->6.
What should be the modified linked list after the function call?
(A) 2 <--> 1 <--> 4 <--> 3 <--> 6 <-->5
(B) 5 <--> 4 <--> 3 <--> 2 <--> 1 <-->6.
(C) 6 <--> 5 <--> 4 <--> 3 <--> 2 <--> 1.
(D) 6 <--> 5 <--> 4 <--> 3 <--> 1 <--> 2

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Polynomial Representation Using Linked List

• In the linked representation of polynomials, each node should consist of three elements,
namely coefficient, exponent and a link to the next term.

• The coefficient field holds the value of the coefficient of a term, the exponent field contains
the exponent value of that term and the link field contains the address of the next term in the
polynomial.

• 3x4 + 8x2 + 6x + 8

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• 3x2 + 2xy2 + 5y3 + 7yz

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Polynomial Addition Using Linked List

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Tree
• The tree is one of the most powerful, flexible, versatile and nonlinear advanced data

structures, it represents hierarchical relationship existing between several data items. it is
used in wide range of applications.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• A tree is a finite set of one or more data items(nodes) such that
• There is a special data item called root of the tree
• And its remaining data items are partitioned into number of mutually exclusive (disjoint)

subsets, each of which is itself a tree and they are called subtree. i.e. Every node (exclude
a root) is connected by a directed edge from exactly one other node; A direction is: parent
-> children

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Root
• The first/Top most node is called as Root Node. We always have exactly one

root node in every tree. We can say that root node is the origin of tree data
structure.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Edge
• In a tree data structure, the connecting link between any two nodes is called

as EDGE. In a tree with 'N' number of nodes there will be exactly of 'N-1' number
of edges.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Parent
• In a tree data structure, the node which is predecessor of any node is called as PARENT

NODE.

• In simple words, the node which has branch from it to any other node is called as
parent node. Parent node can also be defined as "The node which has child / children".

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Child
• In a tree data structure, the node which is descendant of any node is called as CHILD Node.

• In simple words, the node which has a link from its parent node is called as child node. In a
tree, any parent node can have any number of child nodes. In a tree, all the nodes except root
are child nodes.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Leaf / External
• In a tree data structure, the node which does not have a child is called as LEAF Node. In simple

words, a leaf is a node with no child.

• In a tree data structure, the leaf nodes are also called as External Nodes. External node is also
a node with no child. In a tree, leaf node is also called as 'Terminal' node.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Internal Nodes
• In a tree data structure, the node which has at least one child is called as INTERNAL Node. In

simple words, an internal node is a node with at least one child.

• In a tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root
node is also said to be Internal Node if the tree has more than one node. Internal nodes are
also called as 'Non-Terminal' nodes.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Degree
• In a tree data structure, the total number of children of a node is called as DEGREE of that

Node. In simple words, the Degree of a node is total number of children it has.

• The highest degree allowed of a node in a tree is called as 'Degree of Tree'

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Level / Depth / Height
• In a tree data structure, the root node is said to be at Level 0 and the children of root node are

at Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on...

• In simple words, in a tree each step from top to bottom is called as a Level and the Level count
starts with '0' and incremented by one at each level (Step).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Path
• In a tree data structure, the sequence of Nodes and Edges from one node to another node is

called as PATH between that two Nodes. Length of a Path is total number of edge in that
path. In below example the path A - B - E - J has length 4.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Sub Tree
• In a tree data structure, each child from a node forms a subtree recursively.

Every child node will form a subtree on its parent node.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binary tree
• A binary tree T is defined as a finite set of elements called nodes such that,
• T is empty (null tree)
• T contain a distinguished node R, called the root of T, and the remaining nodes of T form

an ordered pair of disjoint binary tree T1 and T2
• Direct: - A tree T in which any node can have maximum two children (left and right)

struct node {
 int data;
 struct node* left;
 struct node* right;
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Let T be a binary search tree with 15 nodes. The minimum and
maximum possible heights of T are: _______
(A) 4 and 15 respectively (B) 3 and 14 respectively
(C) 4 and 14 respectively (D) 3 and 15 respectively

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The height of a tree is the length of the longest root-to-leaf path in it. The
maximum and minimum number of nodes in a binary tree of height 5 are
(A) 63 and 6, respectively (B) 64 and 5, respectively
(C) 32 and 6, respectively (D) 31 and 5, respectively

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The height of a binary tree is the maximum number of edges in any root to leaf
path. The maximum number of nodes in a binary tree of height h is:
a) 2h−1 b) 2h−1 – 1 c) 2h+1– 1 d) 2h+1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binary tree representation using array
• Binary tree can be represented using an array
• General representation
• The root is at index ‘1’
• For any given node at position ‘i’

• Left Child is at position 2*i
• Right Child is at position 2*i + 1

• If a node does not have a left or right child, that position in the array remains empty or is filled with a
special value indicating it's vacant (like null or -1)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In fact, a binary tree that has n-elements may require an array of size up to 2n

(including position 0) for its representation.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Linked representation of binary tree

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binary tree representation using Linked List
• A binary tree can be efficiently represented using a linked list structure where each node of the tree is

represented by a separate node in the linked list. This linked structure is typically referred to as a
"node-based" representation.

• Each node in the linked list contains the following components:
• Data: The value stored in the node.
• Left Pointer: A pointer pointing to the left child node.
• Right Pointer: A pointer pointing to the right child node.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

#include <stdio.h>
#include <stdlib.h>
typedef struct Node
{

int data;
struct Node* left;
struct Node* right;

} Node;

Node* createNode(int data)
{

Node* newNode = (Node*) malloc(sizeof(Node));
if (!newNode)
{

printf("Memory error\n");
exit(1);

}
newNode->data = data;
newNode->left = NULL;
newNode->right = NULL;
return newNode;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void insert(Node** root, int data)
{

if (*root == NULL)
{

*root = createNode(data);
return;

}
if (data < (*root)->data)
{

insert(&((*root)->left), data);
}
else
{

insert(&((*root)->right), data);
}

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Traversal of binary tree
• The process of visiting (checking and/or updating) each node in a tree data structure, exactly

once in called tree traversal. Such traversals are classified by the order in which the nodes are
visited.

• Unlike linked lists, one-dimensional arrays and other linear data structures, which are
canonically traversed in linear order, trees may be traversed in multiple ways.

• They may be traversed in depth-first or breadth-first order. There are three common ways to
traverse them in depth-first order: in-order, pre-order and post-order. Beyond these basic
traversals, various more complex or hybrid schemes are possible, such as depth-limited
searches like iterative deepening depth-first search.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Some applications do not require that the nodes be visited in any particular order as long as
each node is visited precisely once. For other applications, nodes must be visited in an order
that preserves some relationship.

• These steps can be done in any order. If (L) is done before (R), the process is called left-to-right
traversal, otherwise it is called right-to-left traversal. The following methods show left-to-right
traversal:

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Pre-order (Root L R)
Pre-order: F, B, A, D, C, E, G, I, H.
• Check if the current node is empty or null.
• Display the data part of the root (or current node).
• Traverse the left subtree by recursively calling the pre-order function.
• Traverse the right subtree by recursively calling the pre-order function.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

In-order (L root R)
In-order: A, B, C, D, E, F, G, H, I.
• Check if the current node is empty or null.
• Traverse the left subtree by recursively calling the in-order function.
• Display the data part of the root (or current node).
• Traverse the right subtree by recursively calling the in-order function.
• In a binary search tree, in-order traversal retrieves data in sorted order.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Post-order (L R Root)
Post-order: A, C, E, D, B, H, I, G, F.
• Check if the current node is empty or null.
• Traverse the left subtree by recursively calling the post-order function.
• Traverse the right subtree by recursively calling the post-order function.
• Display the data part of the root (or current node).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The post order traversal of a binary tree is 8, 9, 6, 7, 4, 5, 2, 3, 1. The inorder traversal
of the same tree is 8, 6, 9, 4, 7, 2, 5, 1, 3. The height of a tree is the length of the longest
path from the root to any leaf. The height of the binary tree above is ________.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Inorder : D B H E A I F J C G
Preorder : A B D E H C F I J G

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void inorderTraversal(Node* root)
{

if (root == NULL)
return;

inorderTraversal(root->left);
printf("%d ", root->data);
inorderTraversal(root->right);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void preorderTraversal(Node* root)
{

if (root == NULL)
return;

printf("%d ", root->data);
preorderTraversal(root->left);
preorderTraversal(root->right);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void postorderTraversal(Node* root)
{

if (root == NULL)
return;

postorderTraversal(root->left);
postorderTraversal(root->right);
printf("%d ", root->data);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Binary search tree / Ordered tree / Sorted binary tree
• A binary search tree (BST) is a binary tree in which left subtree of a node contains a key less

than the node’s key and right subtree of a node contains only the nodes with key greater than
the node’s key. Left and right sub tree must each also be a binary search tree.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Searching
• We begin by examining the root node. If the tree is null, the key we are searching for does not exist in

the tree. Otherwise, if the key equals that of the root, the search is successful and we return the node.

• If the key is less than that of the root, we search the left subtree. Similarly, if the key is greater than
that of the root, we search the right subtree.

• This process is repeated until the key is found or the remaining subtree is null. If the searched key is not
found after a null subtree is reached, then the key is not present in the tree.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Operations
• Binary search trees support three main operations: insertion of elements,

deletion of elements, and lookup (checking whether a key is present).

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q While inserting the elements 71, 65, 84, 69, 67, 83 in an empty binary
search tree (BST) in the sequence shown, the element in the lowest level is
(A) 65 (B) 67 (C) 69 (D) 83

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion
• Insertion begins as a search would begin; if the key is not equal to that of the root, we search

the left or right subtrees as before.

• Eventually, we will reach an external node and add the new key-value pair (here encoded as a
record ‘new Node') as its right or left child, depending on the node's key.

• In other words, we examine the root and recursively insert the new node to the left subtree if
its key is less than that of the root, or the right subtree if its key is greater than or equal to
the root.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Deletion

• Deleting a node with no children: simply remove the node from the tree.
• Deleting a node with one child: remove the node and replace it with its child.
• Deleting a node with two children: call the node to be deleted D. Do not delete D.

• Instead, choose either its in-order predecessor node or its in-order successor node as
replacement node E (s. figure). Copy the user values of E to D.

• If E does not have a child simply remove E from its previous parent G. If E has a child, say F, it
is a right child. Replace E with F at E's parent.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The major advantage of binary search trees over other data structures is that the
related sorting algorithms and search algorithm such as in-order traversal can be very efficient;
they are also easy to code

Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The pre-order traversal of a binary search tree is given by 12, 8, 6, 2, 7, 9,
10, 16, 15, 19, 17, 20. Then the post-order traversal of this tree is:
a) 2, 6, 7, 8, 9, 10, 12, 15, 16, 17, 19, 20
b) 2, 7, 6, 10, 9, 8, 15, 17, 20, 19, 16, 12
c) 7, 2, 6, 8, 9, 10, 20, 17, 19, 15, 16, 12
d) 7, 6, 2, 10, 9, 8, 15, 16, 17, 20, 19, 12

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Which of the following is/are correct inorder traversal sequence(s) of binary
search tree(s)? 1. 3, 5, 7, 8, 15, 19, 25
2. 5, 8, 9, 12, 10, 15, 25
3. 2, 7, 10, 8, 14, 16, 20
4. 4, 6, 7, 9, 18, 20, 25
a) 1 and 4 only b) 2 and 3 only c) 2 and 4 only d) 2 only

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Suppose that we have numbers between 1 and 100 in a binary search tree and
want to search for the number 55. Which of the following sequences CANNOT be
the sequence of nodes examined?
(а) {10, 75, 64, 43, 60, 57, 55} (b) 190, 12, 68, 34, 62, 45, 55}
(с) (9, 85, 47, 68, 43, 57, 55} (d) {79, 14, 72, 56, 16, 53, 55}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Node* searchBST(Node* root, int data)
{

if (root == NULL || root->data == data)
{

return root;
}
if (data < root->data)
{

return searchBST(root->left, data);
}
return searchBST(root->right, data);

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

void insertBST(Node** root, int data)
{

if (*root == NULL)
{

*root = createNode(data);
return;

}
if (data < (*root)->data)
{

insertBST(&((*root)->left), data);
}
else if (data > (*root)->data)
{

insertBST(&((*root)->right), data);
}
else
{

printf("Element %d already exists in the BST.\n", data);
}

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Node* deleteBST(Node* root, int data)
{

if (!root)
return root;

if (data < root->data)
{

root->left = deleteBST(root->left, data);
}
else if (data > root->data)
{

root->right = deleteBST(root->right, data);
}
else
{

if (!root->left)
{

Node* temp = root->right;
free(root);
return temp;

}
else if (!root->right)
{

Node* temp = root->left;
free(root);
return temp;

}
Node* temp = findMinValueNode(root->right);
root->data = temp->data;
root->right = deleteBST(root->right, temp->data);

}
return root;

}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

AVL tree
• In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is

a self-balancing binary search tree. It was the first such data structure to be invented.

Adelson-Velsky Landis

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at
any time they differ by more than one, rebalancing is done to restore this property.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Balance factor
• In a binary tree the balance factor of a node N is defined to be the height

difference Balance Factor(N): = Height (LeftSubtree(N)) – Height
(RightSubtree(N)) of its two child subtrees.

• A binary tree is defined to be an AVL tree if the invariant Balance Factor(N) ∈ {–1,
0, +1} holds for every node N in the tree.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• A node N with Balance Factor(N) > 0 is called "left-heavy“

• One with Balance Factor(N) < 0 is called "right-heavy“

• One with Balance Factor(N) = 0 is sometimes simply called "balanced".

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion in an AVL tree

• Insert a node similarly as we do in binary search tree.
• After insertion start checking the balancing factor of each node in a bottom up

fashion that is from newly inserted node towards the root.
• Stop on the first node whose balancing factor is violated and go two steps

towards the newly inserted nodes. watch the movement, which is identified as
the problem.

Problem Solution
LL R
RR L
LR LR
RL RL

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider an empty AVL tree and insert the following nodes in
sequence 21, 26, 30, 9, 4, 14, 28, 18, 15, 10, 2, 3, 7?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Insertion in an AVL tree

• After every insertion at most two rotations are sufficient to balance the AVL tree

Problem Solution
LL R
RR L
LR LR
RL RL

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Deletion in an AVL tree

AVL
Deletion

L

L0

RR

L1

RL

L-1

RR

R

R0

LL

R1

LL

R-1

LR

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Deletion in an AVL tree

Q delete the following nodes in sequence 2, 3, 10, 18, 4, 9, 14, 7,
15 ?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Analysis of AVL tree

• Lookup, insertion, and deletion all take O(log n) time in both the average and
worst cases, where n is the number of nodes in the tree prior to the operation.

• Insertions and deletions may require the tree to be rebalanced by one or
more tree rotations.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(log n)
Insert O(log n) O(log n)
Delete O(log n) O(log n)

Algorithm Average Worst case
Space O(n) O(n)
Search O(log n) O(n)
Insert O(log n) O(n)
Delete O(log n) O(n)

Binary search tree

AVL tree

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Complete Binary Tree

• Consider a binary tree T, the maximum number of nodes at height h is 2h nodes.
• The binary tree T is said to be complete binary tree, if all its level except possibly

the last, have the maximum number of nodes and if all the nodes at the last level
appear as far left as possible.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• One can easily determine the children and parent of a node k in any complete
tree T

• Specially the left and right children of the node K are 2*k, 2*k + 1 and the parent
of k is the node lower bound(k/2)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Heap
• Suppose H is a complete binary tree with n elements, H is called a Heap, if each node N of H

has following properties:
• The value of N is greater than to the value at each of the children of N then it is called

Max heap.
• A min heap is defined as the value at N is less than the value at any of the children of N.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q A max-heap is a heap where the value of each parent is greater than or equal to
the values of its children. Which of the following is a max-heap?

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider a binary max-heap implemented using an array. Which one
of the following arrays represents a binary max-heap?
(A) 23,17,14,6,13,10,1,12,7,5
(B) 23,17,14,6,13,10,1,5,7,12
(C) 23,17,14,7,13,10,1,5,6,12
(D) 23,17,14,7,13,10,1,12,5,7

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The elements 32, 15, 20, 30, 12, 25, 16 are inserted one by one in the
given order into a Max Heap. The resultant Max Heap is.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The elements 32, 15, 20, 30, 12, 25, 16 are inserted one by one in the given
order into a Max Heap. The resultant Max Heap is.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following array of elements. 〈89, 19, 50, 17, 12, 15, 2, 5, 7, 11, 6, 9,
100〉. The minimum number of interchanges needed to convert it into a max-heap
is
(A) 4 (B) 5 (C) 2 (D) 3

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. The
level-order traversal of the heap is: 10, 8, 5, 3, 2. Two new elements 1 and 7 are
inserted into the heap in that order. The level-order traversal of the heap after the
insertion of the elements is:
(A) 10, 8, 7, 3, 2, 1, 5 (B) 10, 8, 7, 2, 3, 1, 5
(C) 10, 8, 7, 1, 2, 3, 5 (D) 10, 8, 7, 5, 3, 2, 1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider a binary max-heap implemented using an array. Which one of the
following arrays represents a binary max-heap?
(A) 25,12,16,13,10,8,14 (B) 25,12,16,13,10,8,14
(C) 25,14,16,13,10,8,12 (D) 25,14,12,13,10,8,16

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q What is the content of the array after two delete operations on the
correct answer to the previous question?
(A) 14,13,12,10,8 (B) 14,12,13,8,10
(C) 14,13,8,12,10 (D) 14,13,12,8,10

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q We are given a set of n distinct elements and an unlabeled binary tree
with n nodes. In how many ways can we populate the tree with the
given set so that it becomes a binary search tree?
(A) 0 (B) 1 (C) n! (D) (1/(n+1)).2nCn

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The maximum number of binary trees that can be formed with three
unlabelled nodes is:
a) 1 b) 5 c) 4 d) 3

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q How many distinct binary search trees can be created out of 4 distinct
keys?
(A) 4 (B) 14 (C) 24 (D) 42

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q how many distinct BST can be constructed with 3 distinct
keys?
a) 4 b) 5 c) 6 d) 9

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q A complete n-ary tree is one in which every node has 0 or n sons. If x is the
number of internal nodes of a complete n-ary tree, the number of leaves in it is
given by
a) x(n−1)+1 b) xn−1 c) xn+1 d) x(n+1)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Strictly binary tree

• If every non-leaf node in a binary tree has non-empty left and right
subtree, the tree is termed as strictly binary tree.

• b. A strictly binary tree with n leaves always contains 2n - 1 nodes.
• c. If every non-leaf node in a binary tree has exactly two children, the

tree is known as strictly binary tree.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Extended binary tree

• A binary tree is said to be 2-tree or extended binary tree if each node has either
0 or 2 children

• Nodes with 2 children are called internal nodes and nodes with 0 children are
called external nodes.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Feature/Property Strictly Binary Tree Extended (Full) Binary Tree

Definition Every non-leaf node has exactly
two children. Every node has either 0 or 2 children.

Nodes with One Child No nodes with only one child. No nodes with only one child.

Special Nodes None. May have external (dummy) nodes to
make it full.

Typical Usage Less common in practical
applications.

Used in scenarios like Huffman coding
trees where it's beneficial to consider
the tree as full.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Threaded binary tree

• A threaded binary tree is a modified binary tree that uses null pointers to link to the
next node in an in-order sequence, optimizing in-order traversal.

• Purpose: Utilizes null pointers to store references (threads) to nodes, aiding efficient
in-order traversal without recursion or stacks.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Types:
• Single Threaded: Nodes threaded towards either in-order predecessor or

successor.
• Double Threaded: Nodes threaded towards both predecessor and successor.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Benefits:
• Allows stack-less in-order traversal.
• Makes efficient use of memory by replacing null pointers with threads.

• This tree variant is beneficial when recursive or stack-based traversals aren't feasible.
However, its popularity has decreased with newer data structures.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Graph
• Graph is a data structure that consists of following two components:
• A finite set of vertices also called as nodes.
• A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered

because (u, v) is not same as (v, u) in case of a directed graph(di-graph).
• The pair of the form (u, v) indicates that there is an edge from vertex u to vertex v.

The edges may contain weight/value/cost.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Graphs are used to represent many real-life applications: Graphs are used to represent
networks. The networks may include paths in a city or telephone network or circuit network.

• Graphs are also used in social networks like LinkedIn, Facebook. For example, in Facebook,
each person is represented with a vertex (or node). Each node is a structure and contains
information like person id, name, gender and locale.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Representation of Graph in Memory

• Following two are the most commonly used representations of a graph.
• Adjacency Matrix
• Adjacency List

• There are other representations also like, Incidence Matrix and Incidence List.
The choice of the graph representation is situation specific. It totally depends on
the type of operations to be performed and ease of use.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Adjacency Matrix: Adjacency Matrix is a 2D array of size V x V where V is the number of
vertices in a graph. Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge
from vertex i to vertex j.

• Adjacency matrix for undirected graph is always symmetric.

• Adjacency Matrix is also used to represent weighted graphs. If adj[i][j] = w, then there is an
edge from vertex i to vertex j with weight w.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• For directed graph

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Incidence Matrix
• Representation of undirected graph : Consider a undirected graph G = (V, E) which has n vertices and m edges all

labelled. The incidence matrix I(G) = [bij], is then n x m matrix,
• where bi,j=1 when edge ej is incident with vi
• = 0 otherwise

• Representation of directed graph : The incidence matrix I(D) = [bij] of digraph D with n vertices and m edges is
the n x m matrix in which.
• Bi,j = 1 if arc j is directed away from vertex vi
• =－1 if arc j is directed towards vertex vi
• =0 otherwise.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Pros: Representation is easier to implement and follow. Removing an edge takes
O(1) time. Queries like whether there is an edge from vertex ‘u’ to vertex ‘v’ are
efficient and can be done O(1).

• Cons: Consumes more space O(V2). Even if the graph is sparse(contains less
number of edges), it consumes the same space. Adding a vertex is O(V2) time.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Adjacency List: An array of lists is used. Size of the array is equal to the number of vertices. Let
the array be array[]. An entry array[i] represents the list of vertices adjacent to the ith vertex.
This representation can also be used to represent a weighted graph. The weights of edges can
be represented as lists of pairs.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Graph Traversal
• Traversal means visiting all the nodes of a graph.

• Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree.

• The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same
node again. To avoid processing a node more than once, we use a Boolean visited array.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Which of the following are valid and invalid DFS traversal sequence
a) 1, 3, 7, 8, 5, 2, 4, 6 b) 1, 2, 5, 8, 6, 3, 7, 4

c) 1, 3, 6, 7, 8, 5, 2, 4 d) 1, 2, 4, 5, 8, 6, 7, 3

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• A standard DFS implementation puts each vertex of the graph into one of two
categories:
• Visited
• Not Visited

• The purpose of the algorithm is to mark each vertex as visited while avoiding
cycles.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The DFS algorithm works as follows:
• Start by putting any one of the graph's vertices on top of a stack.
• Take the top item of the stack and add it to the visited list.
• Create a list of that vertex's adjacent nodes. Add the ones which aren't in the

visited list to the top of stack.
• Keep repeating steps 2 and 3 until the stack is empty.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

DFS(v)
{

visited(v) = 1
For all x adjacent to v
{

if (x is not visited)
DFS(x)

}
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The time and space analysis of DFS differs according to its application area. In
theoretical computer science, DFS is typically used to traverse an entire graph,
and takes time O(|V|+|E|), where |V|is the number of vertices and |E| the
number of edges.

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Edge_(graph_theory)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

DFS-iterative (G, s)
{
 let S be stack
 Push(s)
 while (S is not empty)
 {
 v = pop(S)
 if v is not marked as visited
 {
 mark v as visited
 for all neighbors w of v in Graph G:
 {
 if w is not marked as visited:
 push(w)
 }
 }

}
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Importance of DFS : DFS is very important algorithm as based upon DFS :
• Testing whether graph is connected.
• Computing a spanning forest of G.
• Computing the connected components of G.
• Computing a path between two vertices of G or reporting that no such
• path exists.
• Computing a cycle in G or reporting that no such cycle exists.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Application of DFS : Algorithms that use depth first search as a building block
include :
• Finding connected components.
• Topological sorting.
• Finding 2-(edge or vertex)-connected components.
• Finding 3-(edge or vertex)-connected components.
• Finding the bridges of a graph.
• Generating words in order to plot the limit set of a group.
• Finding strongly connected components.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following sequence of nodes for the undirected graph given below.
1) a b e f d g c 2) a b e f c g d 3) a d g e b c f 4) a d b c g e f
A Depth First Search (DFS) is started at node a. The nodes are listed in the order they are first
visited. Which all of the above is (are) possible output(s)?

(A) 1 and 3 only
(B) 2 and 3 only
(C) 2, 3 and 4 only
(D) 1, 2, and 3

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider the following graph
Among the following sequences
I) a b e g h f II) a b f e h g III) a b f h g e IV) a f g h b e
Which are depth first traversals of the above graph?
(A) I, II and IV only (B) I and IV only
(C) II, III and IV only (D) I, III and IV only

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Breadth First Traversal (or Search)

• Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal
of a tree. The only catch here is, unlike trees, graphs may contain cycles, so we
may come to the same node again.

• To avoid processing a node more than once, we use a Boolean visited array. For
simplicity, it is assumed that all vertices are reachable from the starting vertex,
i.e. the graph is connected

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Which of the following are valid and invalid BFS traversal sequence
a) 1, 3, 2, 5, 4, 7, 6, 8 b) 1, 3, 2, 7, 6, 4, 5, 8

c) 1, 2, 3, 5, 4, 7, 6, 8 d) 1, 2, 3, 7, 5, 6, 4, 8

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

BFS(v)
{

visited(v) = 1
insert[V,Q]
While(Q != Phi)
{

u = Delete(Q);
for all x adjacent to u
{

if (x is not visited)
{

visited(x) = 1
insert(x,Q)

}
}

}
}

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• The time complexity can be expressed as O(|V|+|E|), since every
vertex and every edge will be explored in the worst case. |V| is the
number of vertices and |E| is the number of edges in the graph. Note
that O(|E|)may vary between O(1) and O(|V|2).

http://www.knowledgegate.in/GATE
https://en.wikipedia.org/wiki/Time_complexity

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Breath First Search (BFS) has been implemented using queue data structure.
Which one of the following is a possible order of visiting the nodes in the graph
above?
a) MNOPQR b) NQMPOR c) QMNROP d) POQNMR

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q The Breadth First Search algorithm has been implemented using the queue data
structure. One possible order of visiting the nodes of the following graph is
(A) MNOPQR (B) NQMPOR (C) QMNPRO (D) QMNPOR

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Importance of BFS :

• It is one of the single source shortest path algorithms, so it is used to
• compute the shortest path.
• It is also used to solve puzzles such as the Rubik’s Cube.
• BFS is not only the quickest way of solving the Rubik’s Cube, but also
• the most optimal way of solving it.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Application of BFS : Breadth first search can be used to solve many problems in graph
theory, for example
• Copying garbage collection.
• Finding the shortest path between two nodes u and v, with path length measured by

number of edges (an advantage over depth first search).
• Ford-Fulkerson method for computing the maximum flow in a flow network.
• Serialization/Deserialization of a binary tree vs serialization in sorted order, allows the

tree to be re-constructed in an efficient manner.
• Construction of the failure function of the Aho-Corasick pattern matcher.
• Testing bipartiteness of a graph.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Introduction to hashing
• Main idea of data structure is to help us store the data. But Most common

operation on any data structure is not insert or delete but actually search, as
even for insertion and deletion search is also required.

• In any of the data structure the search time first depends on the number of
elements which data structure contains and then on type of structure. for e.g.
• Unsorted array – O(n)
• sorted array – O(logn)
• link list – O(n)
• BT – O(n)
• BST – O(n)
• AVL – O(logn)

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• So hashing is a technique where search time is independent of the number of items in which
we are searching a data value.

• The basic idea is to use the key itself to find the address in the memory to make searching
easy. For e.g. to use phone number, roll no, Aadhar card, voter id or any other key and convert
it into a smaller practical number (but it must be modified so a great deal of space is not
wasted) and uses the small number as index in a table called hash table.

• The values are then stored in hash table, By using that key you can access the element
in O(1) time.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• This conversion called hash function which is from the set of K keys into the set
of memory location L.
• H: KàL

• In simple terms, a hash function maps a big number or string to a small integer
that can be used as index in hash table. An array that stores pointers to records
corresponding to our search key. The remaining entries can be nil.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199) and
the hash function x mod 10, which of the following statements are true?

i. 9679, 1989, 4199 hash to the same value
ii. 1471, 6171 has to the same value
iii. All elements hash to the same value
iv. Each element hashes to a different value

(A) i only (B) ii only

(C) i and ii only (D) iii or iv

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Collision: - It is possible that two different set of keys K1 and K2 will
yield the same hash address. This situation is called collision. The
technique to resolve collision is called collision resolution.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Characteristics of good hash function
• Easy to compute and understand
• Efficiently computable- It must take less time to compute
• Should uniformly distribute the keys (Each table position equally

likely for each key) and should not result in clustering.
• Must have low collision rate

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Most popular hash function

• Division-remainder method: The size of the number of items in the table is
estimated. That number is then used as a divisor into each original value or key
to extract a quotient and a remainder.

• The remainder is the hashed value. (Since this method is liable to produce a
number of collisions, any search mechanism would have to be able to recognize
a collision and offer an alternate search mechanism.)
• H(K) = K(mod m)
• H(K) = K(mod m) + 1

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Note: Irrespective of how good a hash function is, collisions are bound to occur.
Therefore, to maintain the performance of a hash table, it is important to
manage collisions through various collision resolution techniques.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Which of the following statement(s) is TRUE?
I. A hash function takes a message of arbitrary length and generates a fixed length code.
II. A hash function takes a message of fixed length and generates a code of variable
length.
III. A hash function may give the same hash
value for distinct messages.
(a) I only (b) Il and IlI only (c) I and Ill only (d) I only

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Mid-Square Method
• The mid-square method is a technique used to generate hash codes by squaring

the key and then extracting a portion of the resulting number. This method was
popular for hash function design in early hashing techniques but has been
superseded by more robust methods in modern systems.

• Square the Key: Take the key, square it (e.g., key 123 gives 15129).
• Middle Extraction: Extract middle digits from the squared result (e.g., from

15129, take 512).
• Fit to Table: Optionally, use modulus to fit the hash within table size.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Pros:
• Simple to use.
• Effective for random, uniform keys.

• Cons:
• Potential for collisions.
• Hash quality varies with key distribution.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Folding Method
• The folding method is a technique used in hashing to partition the key into several parts, then

combine these parts to determine the hash code.

• Here's how the folding method works:
• Partition the Key: Divide the key into equal-sized parts. For example, for a key 123456789

and partition size of 3, you'd have 123, 456, and 789.
• Add the Partitions: Sum these parts together. Continuing the example, 123 + 456 + 789 =

1368.
• Modulus Operation: If the resulting sum is larger than the hash table size, a modulus

operation will bring it within range. For instance, if the hash table has 1000 slots, 1368 %
1000 = 368 would be the final hash code.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Advantages:
• It distributes keys that are close in value across the hash table.
• Simple and intuitive.

• Disadvantages:
• Not as efficient for keys with certain patterns.
• Might still lead to collisions if the table size isn't chosen wisely.
• Like other simple hashing techniques, the folding method's usage has been largely

superseded by more advanced hash functions in modern systems. However, it remains a
basic technique useful for understanding foundational hashing concepts.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Collision Resolution Technique

• Open Addressing/closed hashing - In Open Addressing, all elements are stored in the hash
table itself. i.e. collision is resolved by probing or searching through alternate locations in the
Hash table itself in a particular sequence.

• When searching for an element, we one by one examine table slots until the desired element
is found or it is clear that the element is not in the table. So, at any point, size of table must be
greater than or equal to total number of keys.

• It is of three types linear probing, quadratic probing, double hashing

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider a hash table of size seven, with starting index zero, and a hash function (7x+3) mod
4. Assuming the hash table is initially empty, which of the following is the contents of the table
when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Here “__” denotes
an empty location in the table.
(a) 3, 10, 1, 8, __ , __ , __ (b) 1, 3, 8, 10, __ , __ , __
(c) 1, __ , 3, __ , 8, __ , 10 (d) 3, 10, __ , __ , 8, __ , _

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Linear probing
• Linear probing is a method used in open addressing hashing. When a collision occurs, it

searches the table sequentially from the hashed position to find an empty or matching slot.

• Key Points:
• Uses a random hash function, ensuring constant expected time for operations.
• Achieves O(1) time for insert, remove, and search if the load factor is kept below one.

• Insert(k): Probe until an empty slot is found, then insert k.
• Search(k): Probe until a matching key or empty slot is found.
• Delete(k): Mark slots of deleted keys as “deleted”. Inserts can use these slots, but searches

don’t stop at them.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Linear Probing
• In linear probing method, in case of a collision we find out the next free space and store the

key that is causing collision in it.

• The method of linear probing uses the hash function

h(k, i) = (h’(k) + i) mod m;

for i = 0, 1, … ,m - 1.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Example: Let us take the previous example, where the key value 13 was causing the collision at
location 3.

• h (13) = (h(13) + 0) mod 10 = 3, since it is causing collision we consider the next value of i, i.e. i
=1.

• h (13) = (h(13) + 1) mod 10 = 4, now at this location there is no collision so we place the value
13 at location 4.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q A hash table contains 10 buckets and uses linear probing to resolve
collision. The key values are integers and the hash function used is
key%10, if the values 43 165 62 123 142 are inserted in the table, in
what location would the key value 142 be inserted?
A) 2 b) 3 c) 4 d) 6

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider a hash table of size seven, with starting index zero, and a hash function (3x + 4)mod7.
Assuming the hash table is initially empty, which of the following is the contents of the table
when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Note that ‘_’
denotes an empty location in the table.
(A) 8, _, _, _, _, _, 10 (B) 1, 8, 10, _, _, _, 3
(C) 1, _, _, _, _, _,3 (D) 1, 10, 8, _, _, _, 3

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Advantage:
• Linear probing is fast, simple, and easy to implement, making it a popular

choice on standard hardware.
• It offers high performance due to its excellent locality of reference.

• Disadvantage:
• It's sensitive to the quality of its hash function compared to other schemes.
• Performance drops faster at high load factors due to primary clustering,

leading to more nearby collisions and longer operation times.
• Requires a superior hash function for optimal performance than some other

methods.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Primary Clustering: In open-addressing hash tables, especially with linear
probing, collisions result in records being placed in the next available hash table
cell. This creates a contiguous cluster of occupied cells. When another record
hashes to any part of this cluster, the cluster size increases by one.

• Secondary Clustering: This occurs in open addressing modes, including linear
and quadratic probing, where the probe sequence doesn't depend on the key. A
subpar hash function can make many keys hash to the same spot.
Consequently, these keys either follow the same probe sequence or land in the
same hash chain, leading to slower access times.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Quadratic Probing
• Quadratic probing operates by taking the original hash index and adding successive

values of an arbitrary quadratic polynomial until an open slot is found.

• Quadratic probing uses a hash function of the form

h (k, i) = (h’(k) + f (i2)) mod m

Where, h’ is an auxiliary hash function and i = 0, 1, …, m - 1.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Example: Consider the key values 8, 3, 13, 23 and the hash table size is 10.

• 8 will be placed at: h (8) = [h (8) + f (02)] mod 10 = 8, so it gets placed at
location 8.

• 3 will be placed at: h (3) = [h (3) + f (02)] mod 10 = 3, no collision, so it gets
placed at location 3

• 13 will be placed at: h (13) = [h (13) + f (02)] mod 10 = 3, collision occurred, so
we increase the value of i.

• h (13) = [h (13) + f (12)] mod 10 = 4, no collision, so it gets placed at
location 4.

• 23 will be placed at: h (23) = [h (23) + f (02)] mod 10 = 3, collision occurred, so
we increase the value of i.

• h (23) = [h (23) + f (12)] mod 10 = 4, again collision occurred, so we
increase the value of i.

• h (23) = [h (23) + f (22)] mod 10 = 3 + 4 = 7, no collision occurred, so it gets
placed at location 7.

• Quadratic probing avoids clustering of elements and thus improves the
searching time.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Advantage
• Quadratic probing can be a more efficient algorithm in a closed hashing table, since it

better avoids the clustering problem that can occur with linear probing, although it is not
immune.

• It also provides good memory caching because it preserves some locality of reference;
however, linear probing has greater locality and, thus, better cache performance.

• Disadvantage
• Quadratic probing lies between the two in terms of cache performance and clustering.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Performance of Open Addressing: Like Chaining, performance of hashing can be
evaluated under the assumption that each key is equally likely to be hashed to
any slot of table (simple uniform hashing)
• m = Number of slots in hash table
• n = Number of keys to be inserted in hash table
• Load factor α = n/m (< 1)
• Expected time to search/insert/delete < 1/(1 - α)
• So Search, Insert and Delete take (1/(1 - α)) time

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Chaining

• The idea is to make each cell of hash table point to a linked list of records that
have same hash function value. In chaining, we place all the elements that hash
to the same slot into the same linked list.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

• Advantage: - Chaining is simple

• Disadvantage: -but requires additional memory outside the table.

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

S.No. Separate Chaining Open Addressing

1. Chaining is Simpler to implement. Open Addressing requires more computation.

2. In chaining, Hash table never fills up, we can always

add more elements to chain.

In open addressing, table may become full.

3. Chaining is Less sensitive to the hash function or

load factors.

Open addressing requires extra care for to avoid

clustering and load factor.

4. Chaining is mostly used when it is unknown how

many and how frequently keys may be inserted or

deleted.

Open addressing is used when the frequency and

number of keys is known.

5. Cache performance of chaining is not good as keys

are stored using linked list.

Open addressing provides better cache performance as

everything is stored in the same table.

6. Wastage of Space (Some Parts of hash table in

chaining are never used).

In Open addressing, a slot can be used even if an input

doesn’t map to it.

7. Chaining uses extra space for links. No links in Open addressing

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider a hash table with 9 slots. The hash function is ℎ(k) = k mod 9. The collisions
are resolved by chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20,
33, 12, 17, 10. The maximum, minimum, and average chain lengths in the hash table,
respectively, are
(A) 3, 0, and 1 (B) 3, 3, and 3 (C) 4, 0, and 1 (D) 3, 0, and 2

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Double Hashing
• Double hashing is used in hash tables to handle hash collisions using open addressing. It uses

two hash values: the primary for table indexing and the secondary to set an interval for
searching. This method differs from linear and quadratic probing. With double hashing, data
mapped to the same location has varied bucket sequences, reducing repeated collisions.

• Given two random, uniform, and independent hash functions h1 and h2, the ith location
in the bucket sequence for value k in a hash table of |T| buckets is: h(i, k) = (h1 (k) + i •
h2(k)) mod |T|. Generally, h1 and h2 are selected from a set of universal hash
functions; h1 is selected to have a range of {0, IT| - 1} and h2 to have a range of {1, IT|
- 1}. Double hashing approximates a random distribution; more precisely, pair-wise
independent hash functions yield a probability of (n/|TI)2 that any pair of keys will
follow the same bucket sequence

http://www.knowledgegate.in/GATE

http://www.knowledgegate.in/GATE

Q Consider a double hashing scheme in which the primary hash function is h1(k) = k mod 23, and
the secondary hash function is h2(k) = 1+(k mod 19). Assume that the table size is 23. Then the
address returned by probe 1 in the probe sequence (assume that the probe sequence begins at
probe 0) for key value k = 90 is ________ .?

http://www.knowledgegate.in/GATE

